

Deep Grammar Optimization
for Submessagae Structure
of Network Protocol Parsers

A Technical Report

By Kyle Lavorato and Thomas Dean

COPASSTR20-2

Compass Group, Queen’s University
Kingston, ON, Canada

June 2020

Deep Grammar Optimization for Submessagae Structure

of Network Protocol Parsers

Kyle Lavorato
Queen’s University

Kingston, Canada

13kpl2@queensu.ca

Thomas R Dean
Queen’s University

Kingston, Canada

tom.dean@queensu.ca

Abstract—Network protocols may contain a structure where

a single packet contains a header information and a set

of multiple differing submessage elements. We propose an

approach that will automatically detect this structure through

the protocol’s grammar and generate optimized parser code

to decode it efficiently. This paper analyzes how the proposed

optimization performs as part of an Intrusion Detection Sys-

tem, parsing traffic from the industry standard RTPS network

protocol. We present a robust interface between the parser and

packet analyzer provided at a deep level for each submessage

to improve system performance.

1. Introduction

The parsing of languages is a necessary activity in
computer systems everywhere to create the software infras-
tructure of todays world. At some point in their creation,
every program was parsed and compiled into its current
state. With parsing being such a critical aspect of technology,
there is a constant goal to discover more efficient ways to
parse an input. Furthermore, of the subset of all grammars
used in parsing, context-sensitive grammars have been used
extensively. Parsing strategies such as a kernel with context-
sensitive structured parse trees [1] or network protocol
parsers dealing with deep packet inspection (DPI) [2] all
use context-sensitive grammars. We introduce a grammar
optimization algorithm for context-sensitive network proto-
col parsers. The algorithm will allow for efficient parsing
of submessage structures in network protocols. The goal of
our project is to create a grammar oriented optimization
algorithm to increase the bandwidth of a network protocol
parser. In this context the parser is designed to parse proto-
cols that have been defined in SCL [3], a language designed
by Marquis et al. as an extension to the ASN.1 [4] standard.

There have been considerable efforts in the research
community to optimize parsers since the dawn of parsing
theory [5], all with their own areas of optimization. Our
optimization algorithm targets specifically network protocol
parsers that parse the domain-specific language SCL that
contains parsing constraints. These parsers are often used in
limited networks as part of an Intrusion Detection System
(IDS) as defined by Hasan et al. [6]. Since these parsers are

parsing network traffic for intrusion detection they must be
as efficient and as close to real time as possible, which is
the motivation for this research.

1.1. Optimization Requirements

1.1.1. IDS Real Time Requirements. To create an effective
IDS, it must be able to handle data in as close to real time
as possible throughout its entire interface. The closer to real
time it is able to process traffic, the earlier it is able to raise
an alarm if an attack is detected on the network. When an
alarm is raised early it is more likely that the intrusion can
be dealt with before it deals significant damage.

1.1.2. Reliability. Any changes made to a parser must not
affect its ability to produce a constant correct result from any
input. This includes ensuring that our optimization does not
conflict with any other elements of the parser. Conflicts can
arise between multiple optimizations on the same structure.
We must also ensure that no memory leaks are introduced
into the environment as that will affect the parser’s ability
to run with zero down time.

1.1.3. Security. Alterations to the grammar of SCL can
potentially create new possible vectors of attack in packets
by allowing additional input. We must ensure that our opti-
mization does not create any security vulnerabilities in the
parser’s ability to properly detect malformed and malicious
packets.

1.1.4. Usability. The original parser by ElShakankiry et
al. is designed to be simple to operate from the user’s
perspective. We must ensure that we follow this standard by
not requiring any complex actions from the user to operate
our new optimization.

2. Background

2.1. The TXL Source Transformation Language

TXL is a programming language designed for source
to source transformation and rapid prototyping in software

systems [7]. It allows the programmer explicit control over
the interpretation, application, order and backtracking of
parsing and rewriting of rules. TXL has evolved over time
to become an industry standard general purpose source
transformation tool. It is suited to a wide array of software
reengineering tasks, including the Year 2000 problem of
reprogramming billions of lines of commercial source code
[8].

A TXL source transformation is a twofold process.
First a context-free grammar set is defined for each source
language being used in the transformation. The TXL engine
then derives a parser from the defined grammar and uses
it to process the input in a set of by-example source trans-
formations. Rules and functions are written to match the
contextual information of the input language using grammar
elements and transform it to the specified target.

2.2. Semantic Constraint Language

SCL is a language that provides an extensive tool-set
for defining binary network protocols and any limitations
that are applied to them. SCL itself is an extension to
ASN.1, an internet standard for defining binary protocols.
Marquis et al. designed SCL to use the definition core of
ASN.1 and extended it by adding XML style markup. The
markup adds additional information and limitations to the
protocols. There are three XML markup blocks added to
the original ASN.1 grammar for size, transfer and
constraints statements.

Considering the parser written by ElShakankiry et al.
and our optimization, only the transfer block is under eval-
uation. The transfer markup specifies constraints that are
relevant when decoding the data through parsing. There
are three main transfer statements that the parser must
consider when decoding any packet. The first two are back
and forward blocks, which operate similarly. They both
represent a conditional statement that must hold true during
a parse, otherwise the packet is determined to be malformed
and will fail. In a back constraint, the condition is evaluated
once the decoding of the data is complete. Similarly, in
a forward constraint, the condition is evaluated before or
during the decoding of the data. The final transfer statement
and the one of interest to our grammar optimization is the
callback statement.

2.2.1. Callback Constraint. The callback statement is a
parse termination command, which sends the decoded in-
formation from the parser using C function parameters. Its
main purpose is not simply to terminate a parse, but to solve
a large inefficiency within the SCL decoding process. In
Protocol Tester by Marquis et al. [9], their decoding process
is efficient when parsing protocols encoded with Basic En-
coding Rules (BER) [10]. They experience difficulties when
BER is not used, for example protocols such as OSPF [11],
IGMP [12] and NFS [13]. This is due to the encoding of
these protocols where they generally only specify a number
of bytes that must be decoded for each field. This can result
in graph structures like the partial decode example in Figure

Figure 1: Flowchart of a partial SCL decode

Figure 2: The original callback interface solution

1. Here we have a GrmRec with several Field elements,
which inherit the base Grm class. This decoding flow creates
a scenario where the graph must be walked post parse to
discover the types of all the Field nodes. The walk must
always be completed before the packet can be typed and
sent to its post parse destination.

The callback statement solves this post parse inefficiency
by eliminating the need for the structure walk. When a
callback constraint is indicated in a SCL transfer block, a
typed callback function is generated at the end of the parse
code for that definition. The typed callback function will
pass the C structure for the specific protocol to the constraint
engine. It indicates the type of the packet that the engine
is receiving so it does not need to process its type. With
unique naming, a parser for standard network traffic will
create a scenario as described in Figure 2. Each packet type
that must reach the constraint engine will have its own typed
callback function to send decoded packets.

Figure 3: Parser generation flow chart with grammar optimization

2.3. Network Protocol Parser

TXL has been used as the backbone of the parser written
by ElShakankiry et al. It is used in each phase of the annota-
tion of the original SCL protocol source files, translating the
source from SCL to SCL while adding markup to prepare
it for code generation. The annotation first applies unique
naming to all declarations and references by appending the
name of the protocol to each. Next rule definitions are
annotated with size and value markup and then evaluated
for LL(1) optimization compatibility. Compatible rules are
annotated with @ optimizable markup to indicate their
status in the code generation phase.

Post markup phase, TXL is used to transform the SCL
source to C code that parses each original source protocol.
The annotated SCL source is first used in a SCL to .h
transformation where a C header file is generated for the
protocol. The header consists of structs to hold the data of
each SCL rule definition in the protocol. Once the header
is generated the full C source code is generated in the SCL
to C transformation to create the parser for that protocol.

We have adapted this TXL backbone to place the markup
for our optimization by adding a new step to the previous
TXL pipeline. Once the post markup stage is reached the
SCL to C transformation was altered to search for the new
markup we added. The new markup transforms to new C
source code for our optimized parse methods. Our new TXL
generation pipeline is described in Figure 3.

3. Callback Efficiency

The callback transfer statement is an improvement over
the original decoding method but it also suffers from a
similar efficiency issue itself. Consider the RTPS protocol
and its message structure [14]. A standard full RTPS packet
has the structure shown in Figure 4. Each packet has a global
header, which can be composed of multiple fields in a SCL
description and a set of submessages. In a RTPS packet, the
submessages are the component that hold the relevant data
of the message. The header holds information identifying
the packet as RTPS, its version number and the vendor that
sent the message. This header information is relevant to each
submessage and can impact the operation of the submessage
contents. Each submessage field in a RTPS packet contains a
set of any number of nine possible submessage types. Each

Figure 4: UML diagram depicting the submessage structure

type must be evaluated post decoding as separate messages
as they have unique purposes and constraints.

The submessage structure of RTPS poses an almost
identical problem to the inefficiency of Section 2.2.1. When
the callback executes on a full RTPS packet, the receiving
end has no information on the types of the submessages in
the parsed packet. It must therefore walk the entire array of
submessages and for each element, determine its type and
then evaluate it combined with the header information. This
poses a twofold avoidable resource drain on the receiving
end of the constraint engine. The requirements of both walk-
ing the submessage structure each time any message needs
to be typed and having to allocate memory for the storage
of the array pose the issue. In order to solve this problem,
we propose implementing a deeper level of callbacks that
will be specific to each RTPS submessage type.

4. Grammar Extensions

4.1. Annotation Script

The proposed solution to the callback inefficiency re-
quires an SCL annotation syntax to markup rules for the
submessage callback code generation. We propose a simple
three segment annotation to the existing callback transfer
statement to markup rules with all necessary information
for the code generation. Figure 5 describes the alteration

define transfer_statement
[back_block] [NL]

| [forward_block] [NL]
| ’ALL ’BYTES ’USED [NL]
| ’Callback [opt callback_annotation] [NL]

end define

define callback_annotation
[id] [id]

| ’@ [id]
| ’ˆ [id] [id]
| ’Final

end define

Figure 5: Grammar changes for the optimization

to the SCL grammar with the addition of an optional
callback_annotation to callback transfer statements.
Each callback_annotation is designed to be as sim-
ple as possible and each one is used as markup on a specific
segment of the submessage’s definition process.

The annotation script is a three pass TXL transformation,
with each pass adding markup to a different section of the
submessage structure. The full SCL definition of the sub-
message structure that we are annotating is shown in Figure
6. For simplicity, the definition is a scaled down version
of RTPS with only two submessage types. There must first
be a rule definition where the final element is SET OF a
user defined type. That user defined type must reference a
type decision rule, indicating that the set is composed of
multiple different types. The SCL grammar definition of
element_type allow us to follow the reference in the
first rule from the user defined type into the type decision
rule. Then based on the grammar of the type_decision
in the type decision rule we are able to again follow the
references to each defined submessage definition.

The TXL script uses this grammar analysis to markup in-
dividual rules in each phase. An example of the SCL source
of the scaled down RTPS definition post callback annotation
markup is provided in Figure 7. This example indicates the
context of each possible callback_annotation.

4.1.1. Pass One. The main grammar analysis occurs in the
first pass of the TXL script. It searches for the pattern that
matches the conditions for our optimization. The pattern
we are trying to match is a rule definition where the fi-
nal element_type is a SET OF [id] and the transfer
block contains a Callback. If the pattern is found then
we annotate the callback with our first annotation type ”@
[id],” where the [id] is the user defined type’s identifier
in the SET OF [id]. This informs the code generator
that we are initiating a deep callback on the specified type
decision. Additionally, the [id] value from the annotation is
saved for matching in the next pass.

4.1.2. Pass Two. The type decision rule is the focus of the
second pass of the annotation process. The pattern to match
is any type decision rule that has the name matching any
saved identifier from the first pass. A callback statement

FULL ::= SEQUENCE {
Header HEADER (SIZE DEFINED),
guidPrefix GUIDPREFIX (SIZE DEFINED),
subMsg SET OF SUBMESSAGE (SIZE CONSTRAINED)

} (ENCODED BY CUSTOM)
<transfer>

Back { Header.protoName == ’RTPS’ }
Forward { END(subMsg) }
Callback

</transfer>

SUBMESSAGE ::= (ACKNACK | INFO_DST)

ACKNACK ::= SEQUENCE {
kind INTEGER (SIZE 1 BYTES),
flags INTEGER (SIZE 1 BYTES),
nextHeader INTEGER (SIZE 2 BYTES),
readerEnt ENTITYID (SIZE DEFINED) BIGENDIAN,
writerEnt ENTITYID (SIZE DEFINED) BIGENDIAN,
readerSN SNSTATE (SIZE DEFINED),
counter INTEGER (SIZE 4 BYTES)

}
<transfer>
Back {kind == 6}
Forward { ENDIANNESS == flags & 1 }
</transfer>

INFO_DST ::= SEQUENCE {
kind INTEGER (SIZE 1 BYTES),
flags INTEGER (SIZE 1 BYTES),
nextHeader INTEGER (SIZE 2 BYTES),
guidPfx GUIDPREFIX (SIZE DEFINED) BIGENDIAN

}
<transfer>
Back {kind == 14} -- 0x0e
Forward { ENDIANNESS == flags & 1 }
</transfer>

Figure 6: Initial user written SCL code for a subset of RTPS

will be added to the rule’s transfer block with our second
annotation type ”^ [id] [id].” This annotation begins
with a ’^’ symbol to keep the grammar unambiguous. The
two [id] elements in the annotation are the name of the rule
definition the original callback occurred in and the allocation
name that represents the SET OF element from the same
rule definition. This information is added to the annotation
as the code generator requires the background information
of the deep callback structure to generate the parser code.
Each type identifier in the type_decision is then saved
for matching in the next pass.

4.1.3. Pass Three. The rules defining the types in the
phase two type decision are the focus of the third pass
of the annotation process. Each rule that matches a saved
[id] from phase two has a callback statement added to its
transfer block. The callback is annotated with our third
annotation type ”[id] [id].” This annotation contains
the same two [id] values as the annotation from the second
pass. The annotation signals to the code generator that a
callback function needs to be generated for that rule using
the supplied [id] information and the definition of the rule
itself.

FULL_RTPS ˆ FULL ::= SEQUENCE {
Header_FULL_RTPS ˆ Header HEADER_RTPS (SIZE DEFINED),
guidPrefix_FULL_RTPS ˆ guidPrefix GUIDPREFIX_RTPS (SIZE DEFINED),
subMsg_FULL_RTPS ˆ subMsg SET OF SUBMESSAGE_RTPS (SIZE CONSTRAINED)

} (ENCODED BY CUSTOM)
< transfer >

Back {Header_FULL_RTPS.protoName_HEADER_RTPS == ’RTPS’}
Forward {END (subMsg_FULL_RTPS)}
Callback @ SUBMESSAGE_RTPS

</ transfer >

SUBMESSAGE_RTPS ˆ SUBMESSAGE ::= (ACKNACK_RTPS | INFO$DST_RTPS) < transfer >
Callback ˆ FULL_RTPS subMsg

</ transfer >

ACKNACK_RTPS ˆ ACKNACK ::= SEQUENCE {
kind_ACKNACK_RTPS ˆ kind INTEGER (SIZE 1 BYTES),
flags_ACKNACK_RTPS ˆ flags INTEGER (SIZE 1 BYTES),
nextHeader_ACKNACK_RTPS ˆ nextHeader INTEGER (SIZE 2 BYTES),
readerEnt_ACKNACK_RTPS ˆ readerEnt ENTITYID_RTPS (SIZE DEFINED) BIGENDIAN,
writerEnt_ACKNACK_RTPS ˆ writerEnt ENTITYID_RTPS (SIZE DEFINED) BIGENDIAN,
readerSN_ACKNACK_RTPS ˆ readerSN SNSTATE_RTPS (SIZE DEFINED),
counter_ACKNACK_RTPS ˆ counter INTEGER (SIZE 4 BYTES)

} < transfer >
Back {kind_ACKNACK_RTPS == 6}
Forward {ENDIANNESS == flags_ACKNACK_RTPS& 1}
Callback FULL_RTPS subMsg

</ transfer >

INFO$DST_RTPS ˆ INFO$DST ::= SEQUENCE {
kind_INFO$DST_RTPS ˆ kind INTEGER (SIZE 1 BYTES),
flags_INFO$DST_RTPS ˆ flags INTEGER (SIZE 1 BYTES),
nextHeader_INFO$DST_RTPS ˆ nextHeader INTEGER (SIZE 2 BYTES),
guidPfx_INFO$DST_RTPS ˆ guidPfx GUIDPREFIX_RTPS (SIZE DEFINED) BIGENDIAN

} < transfer >
Back {kind_INFO$DST_RTPS == 14}
Forward {ENDIANNESS == flags_INFO$DST_RTPS& 1}
Callback FULL_RTPS subMsg

</ transfer >

Figure 7: SCL code for a subset of RTPS that has been annotated by the grammar optimization

4.1.4. User Control. There may be scenarios where the user
desires to not use our optimization as they may possibly
need the packets sent from the parser in the standard call-
back form. In anticipation of this we have added one addi-
tional callback_annotation type with the ”Final”
annotation. If the TXL script matches a Callback Final
statement in a transfer block then it does not attempt to
optimize it. Instead it removes the annotation to preserve
the callback’s compatibility with the remainder of the TXL
pipeline. The intent of this extra annotation is to enable our
optimization to be as user friendly as possible. The user
only must learn one additional SCL line of the Callback
Final when using our optimization. They are also given
full control over the location in which they wish to use
the optimization. It will only activate where there is a
case to optimize, removing any requirements of grammar
recognition from the user.

4.2. LL(1) Optimization Compatibility

If an SCL definition for type decisions in a pro-
tocol matches the optimization conditions described by

ElShakankiry et al. then a LL(1) look-ahead parser is
generated instead of the normal backtracking parser. The
LL(1) optimization condition can interact with the same
type decision rules that we optimize by grammar, causing
LL(1) to be incompatible with our grammar optimization.
We have only optimized the backtracking parser, therefore
there is no case in the code generation that will match both
optimization’s markup in the same rule.

The RTPS protocol has no possible scenario where both
optimizations would be required under standard use. There-
fore, for practically reasons we have chosen to not optimize
the look-ahead parser. We remove our optimization anno-
tation instead if we match that the SCL has been marked
up with both annotation types. The check is necessary due
to the possibility of special cases where it may be desired
to have a callback in an unusual location. This removal is
performed in the same TXL script that places the LL(1)
markup, which must be performed before any C code is
generated, as shown in Figure 3. Additionally, the markup
removal is written for future extensions with it being simple
to expand to have a simple toggle if the parser is to be used
with protocols that require both.

1 typedef struct {
2 HEADER_RTPS header;
3 GUIDPREFIX_RTPS guidprefix;
4 unsigned long submsglength;
5 unsigned long submsgcount;
6 } FULL_RTPS;

Figure 8: New parent rule struct definition

5. Parser Generation

Once the SCL source has been annotated, it is prepared
for the code generation transformation. First the header
file is created, following the standard generation described
by ElShakankiry et al. When the ”@ [id]” annotation is
matched during header generation a modified parent struct
is generated as shown in Figure 8. The element in the
[id] field will be omitted from the struct for that rule but
the length and count fields are still included. The pointer
array of submessages no longer requires storage as the
deep callbacks will pass the specific typed struct instead
of a pointer to a union struct. When the ”[id] [id]”
annotation is matched during header generation, a function
header definition will be generated for the deep callback.
The function headers are named based on the name of the
individual rule and the protocol’s name. Their parameters
will always be a set of three pointers; A struct of the
parent type from the annotation’s first [id] field, a struct
of the defining rule’s type and the PDU type. In the case
of the ACKNACK submessage, the full function header
would be ACKNACK_RTPS_callback(FULL_RTPS
*full_rtps, ACKNACK_RTPS *acknack_rtps,
PDU *thePDU);.

The C source code generation follows the standard gen-
eration described by ElShakankiry et al. Additional pattern
matching has been added for rules with annotated callbacks
as none of the existing rules will match and generate code.
We have developed two different methods of parsing the
submessage structure which differ in both format and timing
of execution of the deep callback functions. We have named
these the Walker Parse and Immediate Parse. Each method
has complimenting strengths, weaknesses and performance
benchmarks, causing them both to be relevant solutions in
differing scenarios.

5.1. Callback Interface

The new deep callback interface to the constraint engine
is designed to correct the efficiency issues identified in
Section 3. The callback interface is currently implemented
as custom written C code, as the generation of constraints
is not yet automated. The callback functions are designed
to activate and run the constraint engine validation on the
passed in packet structures. The original inefficient interface
function for our scaled down RTPS protocol definition is
shown in Figure 9a. Our new deep callback interface shown
in Figure 9b, runs the same constraint engine code as the
original. Since each function already knows the type of the

passed in packet, unlike in the initial version, the constraint
code can be run instantly instead of requiring to type the
message first.

5.2. Walker Parse

The walker parse method is designed for systems where
more strain can be placed on the parser while providing a
slight reduction in work to the receiving end of the decoded
packets. The theory behind this method is to take the work
that was originally completed in the constraint engine side
and move it to the parser since the constraint engine is the
current bottleneck. Previously when a parsed packet was
sent to the constraint engine, the submessage array was
walked to type the submessage and then correctly process
it.

Our source code structure does not change the way the
submessage element is parsed. We create a local pointer
variable to hold the submessage array since it is no longer a
struct member. It is then allocated and filled by the recursive
parse for SET OF elements designed by ElShakankiry et al.
This change is triggered by the @ [id] callback annotation
in the parent rule definition. The proper post array parse
constraint checks are still performed on the local variable
to ensure no security issues may arise malformed packets.
The walker function for this local array variable, shown in
Figure 10 is then called after the local array has been tested.
The walker function itself is generated piece by piece with
each rule containing the [id] [id] callback annotation
generating a segment. Each generated segment is added to
a collection of statements that match the parent identifier
value. The walker function is a switch statement inside a
loop that has a case for each possible submessage type.
Each iteration the type value is retrieved from the current
submessage under evaluation and then used as the switch
statement parameter. It is compared to predefined constant
values for each submessage. Each case consists of the same
three statements; The deep callback to send the packet
pieces, a deep free function for that submessage to prevent
memory leaks and a break statement as there can only
ever be one possible choice in the switch statement. From
a security standpoint, the switch statement has a default
case which fails the parse in the event of the submessage’s
type not matching any of the defined values, indicating a
malformed packet.

To prevent memory leaks the method of freeing allocated
memory was required to be changed. Previously the allo-
cated submessage array would be freed through the member
in the main packet struct in another walking structure. Since
that has been removed from the struct and replaced with a
local variable, that local variable must be freed before the
parse of the current packet ends. Free functions are now
created for each rule that has the [id] [id] callback
annotation as they represent a message type that will always
have allocated memory. In these new free functions, the
object requiring freeing is passed in as a pointer instead
of by reference for efficiency. Therefore all references are
changed to use the member by pointer arrow operator, ’->’

1 void FULL_RTPS_callback(FULL_RTPS *r, PDU *thePDU)
2 {
3 struct HeaderInfo *h = thePDU->header;
4 for(int i = 0; i < r->submsgcount; i++)
5 {
6 if(r->submsg[i].type == ACKNACK_RTPS_VAL)
7 {
8 ...
9 }

10 else if(r->submsg[i].type == INFO$DST_RTPS_VAL)
11 {
12 ...
13 }
14 }
15 }

(a)

1 void ACKNACK_RTPS_callback (FULL_RTPS *full_rtps,
2 ACKNACK_RTPS *acknack_rtps, PDU *thePDU) {
3 ...
4 }
5
6 void INFO$DST_RTPS_callback (FULL_RTPS *full_rtps,
7 INFO$DST_RTPS *info$dst_rtps, PDU *thePDU) {
8 ...
9 }

(b)

Figure 9: (a) Original callback interface function. (b) Optimized deep callback interface functions

1 bool walk_SUBMESSAGE_RTPS (FULL_RTPS *full_rtps, SUBMESSAGE_RTPS *submsg, PDU *thePDU) {
2 uint32_t type;
3 for (int i = 0; i < full_rtps->submsgcount; i++) {
4 type = submsg[i].type;
5 switch (type) {
6 case INFO$DST_RTPS_VAL :
7 INFO$DST_RTPS_callback (full_rtps, &submsg[i].ptr.info$dst_rtps, thePDU);
8 freeINFO$DST_RTPS (&submsg[i].ptr.info$dst_rtps);
9 break;

10 case ACKNACK_RTPS_VAL :
11 ACKNACK_RTPS_callback (full_rtps, &submsg[i].ptr.acknack_rtps, thePDU);
12 freeACKNACK_RTPS (&submsg[i].ptr.acknack_rtps);
13 break;
14 default :
15 return false;
16 }
17 }
18 }

Figure 10: Parse structure for the walk optimization method

instead of the member by reference dot operator, ’.’. The
remainder of the existing free method for a packet of the
protocol still functions as before but does not include freeing
any of the types handled by the deep frees.

Walking the submessage array in the parser removes
the maximum amount of strain from the constraint engine
that would be caused by the submessages. Due to the parse
of each submessage being verified as successful before the
walk is started, the constraint engine can begin processing
each submessage as soon as it is received. The constraint
engine will never need to backtrack due to a parse failing
after only a portion of the submessages have been sent.
The benefit to the constraint engine comes at a cost to the
parser efficiency. Memory allocation for the entire array of
submessages requires both time and resources, reducing the
bandwidth of the parser. The requirement of walking the
entire array at callback time also reduces the bandwidth.
Although since callback and free are grouped together the
extra walk that was required at free time is now avoided.

5.3. Immediate Parse

The immediate parse method is designed for systems
where it is desired to have the parser and constraint engine
running as efficiently as possible combined. The theory
behind this method is to send data to the constraint engine
as soon as a submessage is successfully parsed. By sending
submessages as soon as they are available, the constraint
engine is able to begin processing them immediately.

As with the previous method we do not change the way
the submessage element is parsed. We begin by creating
a local pointer to the submessage union struct when the
@ [id] callback annotation is matched. We then create
a modified version of the recursive parse to interact with
the local pointer. Since we intend to send the submessages
immediately after they are parsed, there is no need to store
them in an array. By eliminating the memory allocation and
assignment of the array there is large potential savings when
running tens of thousands of packets through the parser. The
recursive parse retains its structure as shown in Figure 11,
using the same termination conditions as before to parse all
submessages. The non-saving recursive parse is generated

1 SUBMESSAGE_RTPS *parseSetOfSUBMESSAGE (FULL_RTPS *full_rtps, PDU *thePDU, int n, int *size, char *progname,
2 uint8_t endianness) {
3 SUBMESSAGE_RTPS submsg;
4 if (!parseSUBMESSAGE (full_rtps, &submsg, thePDU, progname, endianness)) {
5 if (n == 0) {
6 *size = 0;
7 return NULL;
8 }
9 *size = n;

10 return NULL;
11 }
12 else {
13 SUBMESSAGE_RTPS *result = parseSetOfSUBMESSAGE (full_rtps, thePDU, n +1, size, progname, endianness);
14 result = &submsg;
15 return result;
16 }
17 }

Figure 11: Non-saving recursive parse function for SET OF elements

1 bool parseSUBMESSAGE (FULL_RTPS *full_rtps, SUBMESSAGE_RTPS *submessage_rtps, PDU *thePDU, char
2 *progname, uint8_t endianness) {
3 unsigned long pos = thePDU->curPos;
4 unsigned long remaining = thePDU->remaining;
5 if (parseACKNACK (&submessage_rtps->ptr.acknack_rtps, thePDU, progname, endianness)) {
6 full_rtps->submsglength = thePDU->curPos - full_rtps->submsglength;
7 full_rtps->submsgcount = 1;
8 ACKNACK_RTPS_callback (full_rtps, &submessage_rtps->ptr.acknack_rtps, thePDU);
9 freeACKNACK_RTPS (&submessage_rtps->ptr.acknack_rtps);

10 return true;
11 }
12 thePDU->curPos = pos;
13 thePDU->remaining = remaining;
14 if (parseINFO$DST (&submessage_rtps->ptr.info$dst_rtps, thePDU, progname, endianness)) {
15 full_rtps->submsglength = thePDU->curPos - full_rtps->submsglength;
16 full_rtps->submsgcount = 1;
17 INFO$DST_RTPS_callback (full_rtps, &submessage_rtps->ptr.info$dst_rtps, thePDU);
18 freeINFO$DST_RTPS (&submessage_rtps->ptr.info$dst_rtps);
19 return true;
20 }
21 return false;
22 }

Figure 12: Parse structure for the immediate optimization method

from the ^ [id] [id] callback annotation on the type
decision rule. Upon termination when all the submessages
are parsed, the final element is returned in the pointer, al-
lowing for testing of the post parse constraints to ensure the
parse was successful. The function parseSUBMESSAGE
which is called from the recursive parse is where the deep
callbacks occur. It is generated piece by piece from the rules
with [id] [id] callback annotation as a backtracking
parser. Our optimization changes the code that executes
when the parse of a submessage is successful, as shown in
Figure 12. The length and count fields of the parent struct are
set, the deep callback function is called and the submessage
that was parsed is freed using a deep free function.

Avoiding unnecessary malloc operations and walking of
array structures allows the parser to execute as efficiently
as possible. Not only is this benefit present, but sending
submessages to the constraint engine as soon as they are
parsed allows for earlier processing. Additionally, by send-

ing submessages immediately as they are available there is a
natural extension to a parallel processing producer/consumer
queue system. Despite the benefits of this system there is
a potential weakness in the method. A parse can fail due
to a malformed or dangerous submessage once one or more
have already reached callback and been sent to the constraint
engine. In this scenario, the engine must backtrack and
remove those submessages from a queue or processing as
they are potentially dangerous. The parser supplies the pass
and fail results for the packet but there is no current method
to apply this result to backtracking as we have focused on
the parser grammar optimization.

6. Validation

We evaluate the generated optimized parse methods by
comparing to the performance of the base Network Protocol
Parser by ElShakankiry et al. We follow the existing IDS

Figure 13: The overall IDS interface

interface as described in Figure 13. The parser decodes and
verifies network traffic in the form of packets, sending them
to the constraint engine through callbacks. The constraint
engine then analyzes them against constraints of what stan-
dard network traffic should look like. If they fail constraint
checking then the engine would raise an alarm to the rest
of the system.

Testing was completed by measuring the performance of
both the parser in isolation and the full IDS interface, using
a 1668 MB packet capture of realistic network data. The
packet capture is generated using the RTI version of the
Data Distribution Service (DDS) [15]. It generates RTPS
data and also includes IGMP, ARP and NTP packets to
simulate a realistic air traffic control limited network. A
full 100 parses were run on each of the three IDS builds
in both parser isolation and full system interface using the
pcapparse executable. An average value was calculated
from the 100 trials since parser performance can vary de-
pending on system load. It is especially difficult to keep
constant system load through all trials over an extended
period. The resulting standard deviation of the bandwidth
measurement is an average of 175.09 (Mbit/s) between all
the builds. All tests were performed on a quad-core CPU
running at 2.60 GHz.

Tables 1 and 2 show the performance differences be-
tween each parse method when run in parser isolation and
complete IDS interface respectively.

TABLE 1: Performance of Parser

Algorithm Run Time (s) Bandwidth (Mbit/s)
Standard Parse 9.6 1402.17
Walker Parse 9.4 1432.37

Immediate Parse 9.0 1509.62

TABLE 2: Performance of Parser and Constraint Engine

Algorithm Run Time (s) Bandwidth (Mbit/s)
Standard Parse 9.8 1379.97
Walker Parse 9.6 1408.91

Immediate Parse 9.3 1457.26

The results validate the strengths and weakness of each
parse method as outlined in Sections 5.2 and 5.3. Each

method provides a clear increase to the performance of
the entire system, improving the net bandwidth. The walker
parse in Table 3 is an overall 2.13% increase in bandwidth,
while the immediate parse in Table 4 is an overall 6.63%

increase in bandwidth. The bandwidth increase percentages
are all calculated from the base Network Protocol Parser as
a reference.

TABLE 3: Performance Increase of the Walker Parse

Interface Speedup (%)
Parser Only 2.15
Full System 2.10

TABLE 4: Performance Increase of the Immediate Parse

Interface Speedup (%)
Parser Only 7.66
Full System 5.60

Considering the performance and strengths of the parse
methods, the immediate parse is the better of the opti-
mizations. Although both have applicable scenarios where
they should be used we suggest the immediate parse to
be generally selected when our grammar optimization is
applied. Although our suggested optimization applies a
6.63% increase to performance, it is still possible to optimize
further, especially since the generated parser only has two
current optimizations. There is an extensive drive to create
optimizations in the research community and we discuss
similar grammar optimizations in the following section.

7. Related Work

As the problem of parsing theory and efficient parsing
is a classic one, there are countless solutions of vastly
varying parser optimizations. We review solutions that share
similarities with our grammar optimization such as ANTLR
[16], ANTLR4 [17], YAKKER [18] and Zebu [19]

7.1. ANTLR LL(*) Parser

ANTLR is a parser generator that introduces a LL(*)
parsing strategy, and an associated grammar analysis sys-
tem to construct the LL(*) parsing decisions. LL(*) is a
parsing optimization that throttles up from the conventional
k � 1 to an arbitrary lookahead. It will then fail over to
a backtracking parse depending on the complexity of the
parsing decision. A grammar augmented with syntactic and
semantic predicates and embedded actions is used as the
input to the ANTLR generator. Their syntactic predicates
allow for the arbitrary lookahead of the LL(*) decision. They
are implemented as grammar fragments that must match the
desired input, much like the XML style annotations that we
use in our grammar.

The parser itself implements a left-to-right one pass
parse, using lookahead DFAs. The DFAs match the nonter-
minal input to predict which production the parser should

expand. The generation analyzes each nonterminal in the
grammar with multiple productions to construct the DFAs.
They propagate through the grammar, applying an algo-
rithm that searches for a LL-regular partition block for
the nonterminal. If the grammar is not LL-regular it has
backup algorithms that will derive a DFA in a less efficient
manner. ANTLR4 is a new version that improves the work
of the previous LL(*) parse, introducing the ALL(*) parsing
strategy. In the ALL(*) strategy they innovate the previous
method by moving the grammar analysis to parse time. This
allows ALL(*) to create a LL(*) decision set for all the
non-left recursive grammars, where LL(*) on its own only
worked efficiently with LL-regular grammars.

Unlike in our optimization that analyzes the grammar for
a particular structure, ANTLR translates the entire grammar
into a decision structure. We do not attempt such a large-
scale transformation and rather improve a smaller ineffi-
ciency. They successfully implement an improved version of
the LL(1) optimization that was designed by ElShakankiry
et al. Since our grammar analysis algorithms target separate
areas than LL(*) and ALL(*), the optimizations can be
adapted to be compatible when implemented in a single
system

7.2. YAKKER Attribute-Directed Parsing

YAKKER is a parsing engine that uses a data-dependent
grammar parsing strategy to satisfy the needs of modern
programmers and data processing applications. It is a full
parsing engine, but in this section, we are focusing on
an optimization that YAKKER applies to their parsing al-
gorithm, named attribute-directed parsing. Similar to our
work, YAKKER uses grammar elements to form the basis
of an enhancement to their parsing algorithm. Their data-
dependent grammar contains nonterminals that can capture
input substrings to direct the parser’s behaviour. This occurs
commonly in the binary data of the network protocols that
we parse, where they contain messages consisting of the
length of the data field followed by the data. To optimize
their parsing process, they convert their grammar defini-
tions for these structures into a set of bindings of the
length constraint. Therefore, the constraint values on the
data length are already set and can be evaluated during the
parse for efficiency. We employ a similar strategy when we
annotate specific identifiers into our callback annotations so
they can be evaluated during transformation time. Like with
YAKKER if the information was not prepared beforehand
there would be an inefficiency in determining the informa-
tion during a semantic analysis phase.

7.3. Zebu Network Protocol Parsing

Zebu is a domain-specific language that is an anno-
tated version of Augmented BNF (ABNF), used to gener-
ate network protocol parsers for HTTP-like protocols. The
added annotations allow for domain-specific optimizations
to reduce memory usage of a Zebu-based application. For
example, a lazy annotation gives the application control of

when the field is to be parsed. Zebu uses a standard input
format of ABNF with only slight modifications, whereas
we use a heavily annotated version of the industry standard
ASN.1. This allows Zebu to be much easier for a first-time
developer to pick up and begin using comparatively. Instead
of a pattern matching tool like TXL in our optimization,
Zebu annotations are processed by the PCRE library [20]
as an input of regular expressions and transformed into
stub functions. The use of a library provides a much lower
learning curve for other researches to extend their work
in the future. Since our work uses the rather tricky and
powerful language of TXL, it has a much higher learning
curve to begin future additions. Zebu employs a parsing
optimization that applies a grammar algorithm much like
ours. If elements are annotated with a nocheck then the
developer is notifying the application that the element re-
quires no validation. When their generation engine matches
the annotation it then it identifies the tokens before and
after the annotated element through a grammar analysis.
They are used as the bounds for the optimization. All the
grammar elements in between the bounds are merged into
one decode state as they need not be validated after the
decode. This therefore reduces the amount of validation
code that need be generated and executed for each packet.
Although this optimization is not applicable in most IDS
instances due to the need to verify traffic, it could still be
an interesting addition for some specific scenarios that could
be encountered by our system.

8. Future Work

While our optimization in its current state has suc-
cessfully accomplished its goal of a moderate performance
increase, there are multiple extensions that will allow to
be relevant in additional scenarios and have further perfor-
mance increases.

8.1. LL(1) Compatibility

There potentially exists type decisions in other protocols
where optimization by our grammar optimization and the
LL(1) look-ahead parse are both possible. In that case it
would be desired to have both optimizations active to gen-
erate the most efficient parser. If such a scenario is presented
it would be necessary to create another pattern match in the
TXL C code generator for both annotation markups in an
SCL definition. A C code sequence that combines the LL(1)
and desired grammar parse method for Walker or Immediate
would also need to be derived.

8.2. Deeper Grammar Analysis

In it’s current form, the grammar analysis only searches
for the submessage structure on a single rule basis. In
RTPS there is the possibility of an SCL definition using
an intermediary user defined type containing the SET OF
SUBMESSAGE element instead of adding it directly in the

RTPS_FULL rule. In this case our optimization would not
detect the structure as it does not perform a deep type
analysis. An extension to the annotation script would be to
alter the first pass to use a reverse FOLLOW set analysis for
deep type checking. By completing this analysis, it would
allow the user to define a protocol in SCL any way they
choose instead of requiring the structure to be in one rule
to use our optimization.

8.3. Parallel Processing of Deep Callback

The deep callback interface in its current state provides
optimal conditions for a parallel processing producer/con-
sumer queue to be implemented in the constraint engine
side of the IDS interface. Submessages are now being sent
as individual packets, which no longer require special type
processing in the callback functions. They can therefore be
placed in a producer queue directly through the callback
functions for the constraint engine to consume. The imme-
diate parse method supports this idea further by populating
the producer queue with entries faster than the walker to
reduce the duration the producer queue may be empty.

By running the parser as a producer and constraint
engine as a consumer on separate threads it will no longer
pause the execution of the parser while the constraint en-
gine analyses the decoded packet. The parser will be able
retain the faster bandwidth of Table 1 when producing as it
will run in isolation. The constraint engine will also likely
generate a bandwidth increase through its ability to process
a continuous queue instead of processing a packet and then
sleeping until the next one is provided.

Acknowledgment

This research is funded in part by the National Science
and Engineering Research Council of Canada (NSERC), the
Department of National Defence (DND), Canada, and the
Ontario Research Fund (ORF), Canada

References

[1] G. Zhou, M. Zhang, D. Ji and Q. Zhu, ”Tree kernel-based re-
lation extraction with context-sensitive structured parse tree infor-
mation,” in Proceedings of the 2007 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL), June 28-30, 2007,

Prague, Czech Republic, 2007 pp. 728-736. [Online]. Available:
http://www.anthology.aclweb.org/D/D07/D07-1.pdf#page=762

[2] A. ElShakankiry, T. Dean, ”Context sensitive and secure parser gen-
eration for deep packet inspection of binary protocols,” Queen’s Uni-
versity, Kingston, 2017.

[3] S. Marquis, T. R. Dean, and S. Knight, SCL: a language for security
testing of network applications, in Proceedings of the 2005 conference

of the Centre for Advanced Studies on Collaborative Research, October

17-20, 2005, Toronto, Ontario, Canada, 2005, pp. 155-164. [Online].
Available: http://doi.acm.org/10.1145/1105634.1105646

[4] Information Technology (ITU), ”Abstract Syntax Notation One
(ASN.1): Specification of basic notation.” [Online]. Available:
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12479

[5] J. A. Hawkins, ”A Parsing Theory of World Order Universals,” Lin-

guistic Inquiry, vol. 21, no. 2, pp. 223-261, Spring, 1990. [Online].
Available: http://www.jstor.org/stable/4178670

[6] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine, Intrusion
detection in a private network by satisfying constraints, in 14th Annual

Conference on Privacy, Security and Trust, PST 2016, Auckland,

New Zealand, December 12-14, 2016, 2016, pp. 623-628. [Online].
Available: https://doi.org/10.1109/PST.2016.7906997

[7] J. R. Cordy, The TXL source transformation language, Science of

Computer Programming, vol. 61, no. 3, pp. 190-210, 2006. [Online].
Available: https://doi.org/10.1016/j.scico.2006.04.002

[8] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider, Source
transformation in software engineering using the TXL transformation
system, Information & Software, vol. 44, no. 13, pp. 827-837, 2002.
[Online]. Available: https://doi.org/10.1016/S0950-5849(02)00104-0

[9] S. Marquis, T. R. Dean and S. Knight, ”Packet decoding using context
sensitive parsing,” in CASCON ’06 Proceedings of the 2006 conference

of the Center for Advanced Studies on Collaborative research, Octo-

ber 16-19, 2006, Toronto, Ontario, Canada, 2006, no. 20. [Online].
Available: http://doi.acm.org/10.1145/1188966.1188993

[10] Information Technology (ITU), ”ASN.1 encoding rules: Specifica-
tion of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER),” [Online]. Available:
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12483

[11] J. Moy, ”OSPF Version 2,” July 1991. [Online]. Available:
https://tools.ietf.org/html/rfc1247

[12] B. Cain et al., ”Internet Group Management Protocol, Version 3,”
October 2002. [Online]. Available: https://tools.ietf.org/html/rfc3376

[13] B. Callaghan, B. Pawlowski, P. Staubach, ”NFS Version
3 Protocol Specification,” June 1995. [Online]. Available:
https://tools.ietf.org/html/rfc1813

[14] Object Management Group (OMG), The Real-time Publish-Subscribe

Wire Protocol DDS Interoperability Wire Protocol Specification (DDS-

RTPS), 2.1 ed. Real-Time Innovations, Inc., 2010. [Online]. Available:
http://www.omg.org/spec/DDSI-RTPS/2.1/

[15] Real-Time Innovations (RTI), ”Connext DDS Professional.” [Online].
Available: https://www.rti.com/products/dds

[16] T. Parr, K. Fisher, LL(*): the foundation of the ANTLR parser
generator, in Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2011, San

Jose, CA, USA, June 4-8, 2011, 2011, pp. 425-436. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993548

[17] T. Parr, S. Harwell, K. Fisher, Adaptive LL(*) parsing: the
power of dynamic analysis, in Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Sys-

tems Languages & Applications, OOPSLA 2014, Portland, Ore-

gon, USA, October 20-24, 2014, 2014, pp. 579-598. [Online].
http://doi.acm.org/10.1145/2714064.2660202

[18] T. Jim, Y. Mandelbaum, D. Walker, Semantics and algo-
rithms for data-dependent grammars, in Proceedings of the

37th annual ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, POPL 2010, Madrid, Spain,

January 17-23, 2010, 2010, pp. 417-430. [Online]. Available:
http://doi.acm.org/10.1145/1707801.1706347

[19] L. Burgy, L. Reveillere, J. Lawall and G. Muller, Zebu:
a language-based approach for network message processing, in
IEEE Transactions on Software Engineering, July-August 2011,
2011, vol. 37, no. 4, pp. 575-591, 2006. [Online]. Available:
https://doi.org/10.1109/TSE.2010.64

[20] P. Hazel, ”PCRE - Perl Compatible Regular Expressions,” 2006.
[Online]. Available: http://www.pcre.org/

